Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomech ; 137: 111080, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35500469

RESUMEN

Stochastic resonance (SR) is a weak noise stimulation that improves the function of standing balance by increasing sensitivity to somatosensory information. SR implemented in the lower limbs may increase the standing balance function, but the effect of noise stimulation on upper limbs has not been investigated to date. This study aims to investigate the effect of weak electrical noise stimulation of the median nerve at the wrist on the balance control system function using a portable stimulator. Ten healthy individuals participated in the study. Each subject maintained quiet standing with their eyes closed for 40 s while receiving white noise electrical stimulation to the median nerve at the wrist. Center of pressure (COP) displacement and change in the joint position (left and right waist) were measured and compared between a no-stimulus trial (control trial) and a stimulus intensity trial that maximized the effect of SR (optimal trial). Experimental results show that weak electrical noise stimulation of the median nerve at the wrist stabilized the COP and joint position. The anteroposterior (AP) standard deviation of the optimal trial were significantly reduced compared to the control trial in terms of COP and left and right waist, and AP low-frequency range power of the optimal trial were significantly reduced compared to the control trial in terms of COP and left waist. AP mean velocity and AP high-frequency range power at the left waist were significantly reduced in the optimal trial. It was concluded that weak electrical noise stimulation applied to the median nerve can reduce static postural sway.


Asunto(s)
Nervio Mediano , Muñeca , Humanos , Equilibrio Postural/fisiología , Posición de Pie , Vibración
2.
Philos Trans A Math Phys Eng Sci ; 379(2212): 20200249, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34689627

RESUMEN

We propose higher-order detrending moving-average cross-correlation analysis (DMCA) to assess the long-range cross-correlations in cardiorespiratory and cardiovascular interactions. Although the original (zeroth-order) DMCA employs a simple moving-average detrending filter to remove non-stationary trends embedded in the observed time series, our approach incorporates a Savitzky-Golay filter as a higher-order detrending method. Because the non-stationary trends can adversely affect the long-range correlation assessment, the higher-order detrending serves to improve accuracy. To achieve a more reliable characterization of the long-range cross-correlations, we demonstrate the importance of the following steps: correcting the time scale, confirming the consistency of different order DMCAs, and estimating the time lag between time series. We applied this methodological framework to cardiorespiratory and cardiovascular time series analysis. In the cardiorespiratory interaction, respiratory and heart rate variability (HRV) showed long-range auto-correlations; however, no factor was shared between them. In the cardiovascular interaction, beat-to-beat systolic blood pressure and HRV showed long-range auto-correlations and shared a common long-range, cross-correlated factor. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.


Asunto(s)
Sistema Cardiovascular , Presión Sanguínea , Frecuencia Cardíaca
3.
Neurosci Lett ; 765: 136264, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34563622

RESUMEN

The time series of the H-wave amplitude in soleus muscle (SOL) shows fractal (long-range) correlation, which is attributed to input from supraspinal centers. However, whether such long-range power-law correlated input also contributes to the synergistic muscles remains unclear. The purpose of this study was therefore to examine the correlation in the fractal components of H-wave amplitude fluctuations between the synergistic muscles used for plantar flexion, i.e., the medial head of the gastrocnemius muscle (MG) and SOL. In eight young male participants, consecutive H-reflexes were recorded almost simultaneously from the MG and SOL at a stimulation frequency of 0.5 Hz for 30 min. We performed detrending moving-average cross-correlation analysis (DMCA) for each of the H- and M-wave amplitude time series between MG and SOL to assess the existence of a common noise input contributing to these long-range correlations. The cross-correlation coefficient ρDMCA (-1 to 1) was calculated to quantify the strength of the correlation between two different time series. The results indicated a significant long-range power-law correlation between H-wave amplitudes in MG and SOL (ρDMCA: 0.50 (0.22) and 0.22 (0.17), mean (standard deviation) for the original and randomly shuffled surrogate data, respectively, P < 0.05). This was not the case for M-wave amplitudes (ρDMCA: 0.29 (0.23) and 0.20 (0.15), P > 0.05). We conclude that there is a common noise input governing these synergistic muscles, possibly due to supraspinal origin, causing long-range power-law correlations in monosynaptic reflexes.


Asunto(s)
Reflejo H/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Electromiografía , Fractales , Voluntarios Sanos , Humanos , Masculino , Músculo Esquelético/inervación , Adulto Joven
4.
Eur J Appl Physiol ; 121(1): 251-264, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33040216

RESUMEN

PURPOSE: Spontaneous postural sway during quiet standing has been considered a simple output error of postural control. However, as postural sway and inherent body orientation evoke compensatory activity of the plantar flexors, they might contribute to blood circulation under gravitational stress via the muscle pump. Hence, the present study employed an external support device to attenuate the plantar flexor activity in supported standing (SS), to experimentally identify its physiological impact on blood circulation. METHODS: Eight healthy young subjects performed two 5-min quiet standing trials (i.e., normal standing (NS) and SS), and the beat-to-beat interval (RRI) and blood pressure (BP) were compared between trials. We confirmed that postural sway and corresponding plantar flexor activity, quantified by the anteroposterior displacement of the foot center of pressure and lower back position with respect to the wall, and by the amplitude of electromyography and mechanomyography, respectively, were attenuated in SS, while mean body orientation angle and relative position of the BP sensor were comparable to NS. RESULTS: The 5-min averages of diastolic BP and mean arterial pressure during SS were significantly higher than during NS, while RRI and systolic BP did not change. These could be interpreted as an increase in peripheral vascular resistance; meanwhile, in NS, this effect was replaced by the muscle pump of the plantar flexors. CONCLUSION: The muscle contractions related to spontaneous postural sway and body orientation produce substantial physiological impact on blood circulation during quiet standing.


Asunto(s)
Presión Sanguínea , Músculo Esquelético/fisiología , Equilibrio Postural , Posición de Pie , Fenómenos Biomecánicos , Femenino , Pie/irrigación sanguínea , Pie/fisiología , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Adulto Joven
5.
J Phys Ther Sci ; 28(5): 1556-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27313370

RESUMEN

[Purpose] This study aimed 1) to assess whether a prediction model for whole body skeletal muscle mass that is based on a sedentary population is applicable to young male athletes, and 2) to develop a new skeletal muscle mass prediction model for young male athletes. [Subjects and Methods] The skeletal muscle mass of 61 male athletes was measured using magnetic resonance imaging (MRI) and estimated using a previous prediction model (Sanada et al., 2006) with B-mode ultrasonography. The prediction model was not suitable for young male athletes, as a significant difference was observed between the means of the estimated and MRI-measured skeletal muscle mass. Next, the same subjects were randomly assigned to a development or validation group, and a new model specifically relevant to young male athletes was developed based on MRI and ultrasound data obtained from the development group. [Results] A strong correlation was observed between the skeletal muscle mass estimated by the new model and the MRI-measured skeletal muscle mass (r=0.96) in the validation group, without significant difference between their means. No bias was found in the new model using Bland-Altman analysis (r=-0.25). [Conclusion] These results validate the new model and suggest that ultrasonography is a reliable method for measuring skeletal muscle mass in young male athletes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...